tracing/span.rs
1//! Spans represent periods of time in which a program was executing in a
2//! particular context.
3//!
4//! A span consists of [fields], user-defined key-value pairs of arbitrary data
5//! that describe the context the span represents, and a set of fixed attributes
6//! that describe all `tracing` spans and events. Attributes describing spans
7//! include:
8//!
9//! - An [`Id`] assigned by the subscriber that uniquely identifies it in relation
10//! to other spans.
11//! - The span's [parent] in the trace tree.
12//! - [Metadata] that describes static characteristics of all spans
13//! originating from that callsite, such as its name, source code location,
14//! [verbosity level], and the names of its fields.
15//!
16//! # Creating Spans
17//!
18//! Spans are created using the [`span!`] macro. This macro is invoked with the
19//! following arguments, in order:
20//!
21//! - The [`target`] and/or [`parent`][parent] attributes, if the user wishes to
22//! override their default values.
23//! - The span's [verbosity level]
24//! - A string literal providing the span's name.
25//! - Finally, zero or more arbitrary key/value fields.
26//!
27//! [`target`]: super::Metadata::target()
28//!
29//! For example:
30//! ```rust
31//! use tracing::{span, Level};
32//!
33//! /// Construct a new span at the `INFO` level named "my_span", with a single
34//! /// field named answer , with the value `42`.
35//! let my_span = span!(Level::INFO, "my_span", answer = 42);
36//! ```
37//!
38//! The documentation for the [`span!`] macro provides additional examples of
39//! the various options that exist when creating spans.
40//!
41//! The [`trace_span!`], [`debug_span!`], [`info_span!`], [`warn_span!`], and
42//! [`error_span!`] exist as shorthand for constructing spans at various
43//! verbosity levels.
44//!
45//! ## Recording Span Creation
46//!
47//! The [`Attributes`] type contains data associated with a span, and is
48//! provided to the [collector] when a new span is created. It contains
49//! the span's metadata, the ID of [the span's parent][parent] if one was
50//! explicitly set, and any fields whose values were recorded when the span was
51//! constructed. The collector, which is responsible for recording `tracing`
52//! data, can then store or record these values.
53//!
54//! # The Span Lifecycle
55//!
56//! ## Entering a Span
57//!
58//! A thread of execution is said to _enter_ a span when it begins executing,
59//! and _exit_ the span when it switches to another context. Spans may be
60//! entered through the [`enter`] and [`in_scope`] methods.
61//!
62//! The `enter` method enters a span, returning a [guard] that exits the span
63//! when dropped
64//! ```
65//! # use tracing::{Level, span};
66//! let my_var: u64 = 5;
67//! let my_span = span!(Level::TRACE, "my_span", my_var);
68//!
69//! // `my_span` exists but has not been entered.
70//!
71//! // Enter `my_span`...
72//! let _enter = my_span.enter();
73//!
74//! // Perform some work inside of the context of `my_span`...
75//! // Dropping the `_enter` guard will exit the span.
76//!```
77//!
78//! <div class="example-wrap" style="display:inline-block"><pre class="compile_fail" style="white-space:normal;font:inherit;">
79//!
80//! **Warning**: In asynchronous code that uses async/await syntax,
81//! [`Span::enter`] may produce incorrect traces if the returned drop
82//! guard is held across an await point. See
83//! [the method documentation][Span#in-asynchronous-code] for details.
84//!
85//! </pre></div>
86//!
87//! `in_scope` takes a closure or function pointer and executes it inside the
88//! span.
89//! ```
90//! # use tracing::{Level, span};
91//! let my_var: u64 = 5;
92//! let my_span = span!(Level::TRACE, "my_span", my_var = &my_var);
93//!
94//! my_span.in_scope(|| {
95//! // perform some work in the context of `my_span`...
96//! });
97//!
98//! // Perform some work outside of the context of `my_span`...
99//!
100//! my_span.in_scope(|| {
101//! // Perform some more work in the context of `my_span`.
102//! });
103//! ```
104//!
105//! <div class="example-wrap" style="display:inline-block">
106//! <pre class="ignore" style="white-space:normal;font:inherit;">
107//! <strong>Note</strong>: Since entering a span takes <code>&self</code>, and
108//! <code>Span</code>s are <code>Clone</code>, <code>Send</code>, and
109//! <code>Sync</code>, it is entirely valid for multiple threads to enter the
110//! same span concurrently.
111//! </pre></div>
112//!
113//! ## Span Relationships
114//!
115//! Spans form a tree structure β unless it is a root span, all spans have a
116//! _parent_, and may have one or more _children_. When a new span is created,
117//! the current span becomes the new span's parent. The total execution time of
118//! a span consists of the time spent in that span and in the entire subtree
119//! represented by its children. Thus, a parent span always lasts for at least
120//! as long as the longest-executing span in its subtree.
121//!
122//! ```
123//! # use tracing::{Level, span};
124//! // this span is considered the "root" of a new trace tree:
125//! span!(Level::INFO, "root").in_scope(|| {
126//! // since we are now inside "root", this span is considered a child
127//! // of "root":
128//! span!(Level::DEBUG, "outer_child").in_scope(|| {
129//! // this span is a child of "outer_child", which is in turn a
130//! // child of "root":
131//! span!(Level::TRACE, "inner_child").in_scope(|| {
132//! // and so on...
133//! });
134//! });
135//! // another span created here would also be a child of "root".
136//! });
137//!```
138//!
139//! In addition, the parent of a span may be explicitly specified in
140//! the `span!` macro. For example:
141//!
142//! ```rust
143//! # use tracing::{Level, span};
144//! // Create, but do not enter, a span called "foo".
145//! let foo = span!(Level::INFO, "foo");
146//!
147//! // Create and enter a span called "bar".
148//! let bar = span!(Level::INFO, "bar");
149//! let _enter = bar.enter();
150//!
151//! // Although we have currently entered "bar", "baz"'s parent span
152//! // will be "foo".
153//! let baz = span!(parent: &foo, Level::INFO, "baz");
154//! ```
155//!
156//! A child span should typically be considered _part_ of its parent. For
157//! example, if a collector is recording the length of time spent in various
158//! spans, it should generally include the time spent in a span's children as
159//! part of that span's duration.
160//!
161//! In addition to having zero or one parent, a span may also _follow from_ any
162//! number of other spans. This indicates a causal relationship between the span
163//! and the spans that it follows from, but a follower is *not* typically
164//! considered part of the duration of the span it follows. Unlike the parent, a
165//! span may record that it follows from another span after it is created, using
166//! the [`follows_from`] method.
167//!
168//! As an example, consider a listener task in a server. As the listener accepts
169//! incoming connections, it spawns new tasks that handle those connections. We
170//! might want to have a span representing the listener, and instrument each
171//! spawned handler task with its own span. We would want our instrumentation to
172//! record that the handler tasks were spawned as a result of the listener task.
173//! However, we might not consider the handler tasks to be _part_ of the time
174//! spent in the listener task, so we would not consider those spans children of
175//! the listener span. Instead, we would record that the handler tasks follow
176//! from the listener, recording the causal relationship but treating the spans
177//! as separate durations.
178//!
179//! ## Closing Spans
180//!
181//! Execution may enter and exit a span multiple times before that span is
182//! _closed_. Consider, for example, a future which has an associated
183//! span and enters that span every time it is polled:
184//! ```rust
185//! # use std::future::Future;
186//! # use std::task::{Context, Poll};
187//! # use std::pin::Pin;
188//! struct MyFuture {
189//! // data
190//! span: tracing::Span,
191//! }
192//!
193//! impl Future for MyFuture {
194//! type Output = ();
195//!
196//! fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
197//! let _enter = self.span.enter();
198//! // Do actual future work...
199//! # Poll::Ready(())
200//! }
201//! }
202//! ```
203//!
204//! If this future was spawned on an executor, it might yield one or more times
205//! before `poll` returns [`Poll::Ready`]. If the future were to yield, then
206//! the executor would move on to poll the next future, which may _also_ enter
207//! an associated span or series of spans. Therefore, it is valid for a span to
208//! be entered repeatedly before it completes. Only the time when that span or
209//! one of its children was the current span is considered to be time spent in
210//! that span. A span which is not executing and has not yet been closed is said
211//! to be _idle_.
212//!
213//! Because spans may be entered and exited multiple times before they close,
214//! [collector]s have separate trait methods which are called to notify them
215//! of span exits and when span handles are dropped. When execution exits a
216//! span, [`exit`] will always be called with that span's ID to notify the
217//! collector that the span has been exited. When span handles are dropped, the
218//! [`drop_span`] method is called with that span's ID. The collector may use
219//! this to determine whether or not the span will be entered again.
220//!
221//! If there is only a single handle with the capacity to exit a span, dropping
222//! that handle "closes" the span, since the capacity to enter it no longer
223//! exists. For example:
224//! ```
225//! # use tracing::{Level, span};
226//! {
227//! span!(Level::TRACE, "my_span").in_scope(|| {
228//! // perform some work in the context of `my_span`...
229//! }); // --> Collect::exit(my_span)
230//!
231//! // The handle to `my_span` only lives inside of this block; when it is
232//! // dropped, the collector will be informed via `drop_span`.
233//!
234//! } // --> Collect::drop_span(my_span)
235//! ```
236//!
237//! However, if multiple handles exist, the span can still be re-entered even if
238//! one or more is dropped. For determining when _all_ handles to a span have
239//! been dropped, collectors have a [`clone_span`] method, which is called
240//! every time a span handle is cloned. Combined with `drop_span`, this may be
241//! used to track the number of handles to a given span β if `drop_span` has
242//! been called one more time than the number of calls to `clone_span` for a
243//! given ID, then no more handles to the span with that ID exist. The
244//! collector may then treat it as closed.
245//!
246//! # When to use spans
247//!
248//! As a rule of thumb, spans should be used to represent discrete units of work
249//! (e.g., a given request's lifetime in a server) or periods of time spent in a
250//! given context (e.g., time spent interacting with an instance of an external
251//! system, such as a database).
252//!
253//! Which scopes in a program correspond to new spans depend somewhat on user
254//! intent. For example, consider the case of a loop in a program. Should we
255//! construct one span and perform the entire loop inside of that span, like:
256//!
257//! ```rust
258//! # use tracing::{Level, span};
259//! # let n = 1;
260//! let span = span!(Level::TRACE, "my_loop");
261//! let _enter = span.enter();
262//! for i in 0..n {
263//! # let _ = i;
264//! // ...
265//! }
266//! ```
267//! Or, should we create a new span for each iteration of the loop, as in:
268//! ```rust
269//! # use tracing::{Level, span};
270//! # let n = 1u64;
271//! for i in 0..n {
272//! let span = span!(Level::TRACE, "my_loop", iteration = i);
273//! let _enter = span.enter();
274//! // ...
275//! }
276//! ```
277//!
278//! Depending on the circumstances, we might want to do either, or both. For
279//! example, if we want to know how long was spent in the loop overall, we would
280//! create a single span around the entire loop; whereas if we wanted to know how
281//! much time was spent in each individual iteration, we would enter a new span
282//! on every iteration.
283//!
284//! [fields]: super::field
285//! [Metadata]: super::Metadata
286//! [verbosity level]: super::Level
287//! [`Poll::Ready`]: std::task::Poll::Ready
288//! [`span!`]: super::span!
289//! [`trace_span!`]: super::trace_span!
290//! [`debug_span!`]: super::debug_span!
291//! [`info_span!`]: super::info_span!
292//! [`warn_span!`]: super::warn_span!
293//! [`error_span!`]: super::error_span!
294//! [`clone_span`]: super::collect::Collect::clone_span()
295//! [`drop_span`]: super::collect::Collect::drop_span()
296//! [`exit`]: super::collect::Collect::exit
297//! [collector]: super::collect::Collect
298//! [`enter`]: Span::enter()
299//! [`in_scope`]: Span::in_scope()
300//! [`follows_from`]: Span::follows_from()
301//! [guard]: Entered
302//! [parent]: #span-relationships
303pub use tracing_core::span::{Attributes, Id, Record};
304
305use crate::{
306 dispatch::{self, Dispatch},
307 field, Metadata,
308};
309use core::{
310 cmp, fmt,
311 hash::{Hash, Hasher},
312 marker::PhantomData,
313 mem,
314 ops::Deref,
315};
316
317/// Trait implemented by types which have a span `Id`.
318pub trait AsId: crate::sealed::Sealed {
319 /// Returns the `Id` of the span that `self` corresponds to, or `None` if
320 /// this corresponds to a disabled span.
321 fn as_id(&self) -> Option<&Id>;
322}
323
324/// A handle representing a span, with the capability to enter the span if it
325/// exists.
326///
327/// If the span was rejected by the current `Collector`'s filter, entering the
328/// span will silently do nothing. Thus, the handle can be used in the same
329/// manner regardless of whether or not the trace is currently being collected.
330#[derive(Clone)]
331pub struct Span {
332 /// A handle used to enter the span when it is not executing.
333 ///
334 /// If this is `None`, then the span has either closed or was never enabled.
335 inner: Option<Inner>,
336 /// Metadata describing the span.
337 ///
338 /// This might be `Some` even if `inner` is `None`, in the case that the
339 /// span is disabled but the metadata is needed for `log` support.
340 meta: Option<&'static Metadata<'static>>,
341}
342
343/// A handle representing the capacity to enter a span which is known to exist.
344///
345/// Unlike `Span`, this type is only constructed for spans which _have_ been
346/// enabled by the current filter. This type is primarily used for implementing
347/// span handles; users should typically not need to interact with it directly.
348#[derive(Debug)]
349pub(crate) struct Inner {
350 /// The span's ID, as provided by `collector`.
351 id: Id,
352
353 /// The collector that will receive events relating to this span.
354 ///
355 /// This should be the same collector that provided this span with its
356 /// `id`.
357 collector: Dispatch,
358}
359
360/// A guard representing a span which has been entered and is currently
361/// executing.
362///
363/// When the guard is dropped, the span will be exited.
364///
365/// This is returned by the [`Span::enter`] function.
366///
367/// [`Span::enter`]: super::Span::enter()
368#[derive(Debug)]
369#[must_use = "once a span has been entered, it should be exited"]
370pub struct Entered<'a> {
371 span: &'a Span,
372
373 /// ```compile_fail
374 /// use tracing::span::*;
375 /// trait AssertSend: Send {}
376 ///
377 /// impl AssertSend for Entered<'_> {}
378 /// ```
379 _not_send: PhantomNotSend,
380}
381
382/// An owned version of [`Entered`], a guard representing a span which has been
383/// entered and is currently executing.
384///
385/// When the guard is dropped, the span will be exited.
386///
387/// This is returned by the [`Span::entered`] function.
388///
389/// [`Span::entered`]: super::Span::entered()
390#[derive(Debug)]
391#[must_use = "once a span has been entered, it should be exited"]
392pub struct EnteredSpan {
393 span: Span,
394
395 /// ```compile_fail
396 /// use tracing::span::*;
397 /// trait AssertSend: Send {}
398 ///
399 /// impl AssertSend for EnteredSpan {}
400 /// ```
401 _not_send: PhantomNotSend,
402}
403
404/// `log` target for all span lifecycle (creation/enter/exit/close) records.
405#[cfg(feature = "log")]
406const LIFECYCLE_LOG_TARGET: &str = "tracing::span";
407/// `log` target for span activity (enter/exit) records.
408#[cfg(feature = "log")]
409const ACTIVITY_LOG_TARGET: &str = "tracing::span::active";
410
411// ===== impl Span =====
412
413impl Span {
414 /// Constructs a new `Span` with the given [metadata] and set of
415 /// [field values].
416 ///
417 /// The new span will be constructed by the currently-active [collector],
418 /// with the current span as its parent (if one exists).
419 ///
420 /// After the span is constructed, [field values] and/or [`follows_from`]
421 /// annotations may be added to it.
422 ///
423 /// [metadata]: mod@super::metadata
424 /// [collector]: super::collect::Collect
425 /// [field values]: super::field::ValueSet
426 /// [`follows_from`]: super::Span::follows_from()
427 pub fn new(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
428 dispatch::get_default(|dispatch| Self::new_with(meta, values, dispatch))
429 }
430
431 #[inline]
432 #[doc(hidden)]
433 pub fn new_with(
434 meta: &'static Metadata<'static>,
435 values: &field::ValueSet<'_>,
436 dispatch: &Dispatch,
437 ) -> Span {
438 let new_span = Attributes::new(meta, values);
439 Self::make_with(meta, new_span, dispatch)
440 }
441
442 /// Constructs a new `Span` as the root of its own trace tree, with the
443 /// given [metadata] and set of [field values].
444 ///
445 /// After the span is constructed, [field values] and/or [`follows_from`]
446 /// annotations may be added to it.
447 ///
448 /// [metadata]: mod@super::metadata
449 /// [field values]: super::field::ValueSet
450 /// [`follows_from`]: super::Span::follows_from()
451 pub fn new_root(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
452 dispatch::get_default(|dispatch| Self::new_root_with(meta, values, dispatch))
453 }
454
455 #[inline]
456 #[doc(hidden)]
457 pub fn new_root_with(
458 meta: &'static Metadata<'static>,
459 values: &field::ValueSet<'_>,
460 dispatch: &Dispatch,
461 ) -> Span {
462 let new_span = Attributes::new_root(meta, values);
463 Self::make_with(meta, new_span, dispatch)
464 }
465
466 /// Constructs a new `Span` as child of the given parent span, with the
467 /// given [metadata] and set of [field values].
468 ///
469 /// After the span is constructed, [field values] and/or [`follows_from`]
470 /// annotations may be added to it.
471 ///
472 /// [metadata]: mod@super::metadata
473 /// [field values]: super::field::ValueSet
474 /// [`follows_from`]: super::Span::follows_from()
475 pub fn child_of(
476 parent: impl Into<Option<Id>>,
477 meta: &'static Metadata<'static>,
478 values: &field::ValueSet<'_>,
479 ) -> Span {
480 let mut parent = parent.into();
481 dispatch::get_default(move |dispatch| {
482 Self::child_of_with(Option::take(&mut parent), meta, values, dispatch)
483 })
484 }
485
486 #[inline]
487 #[doc(hidden)]
488 pub fn child_of_with(
489 parent: impl Into<Option<Id>>,
490 meta: &'static Metadata<'static>,
491 values: &field::ValueSet<'_>,
492 dispatch: &Dispatch,
493 ) -> Span {
494 let new_span = match parent.into() {
495 Some(parent) => Attributes::child_of(parent, meta, values),
496 None => Attributes::new_root(meta, values),
497 };
498 Self::make_with(meta, new_span, dispatch)
499 }
500
501 /// Constructs a new disabled span with the given `Metadata`.
502 ///
503 /// This should be used when a span is constructed from a known callsite,
504 /// but the collector indicates that it is disabled.
505 ///
506 /// Entering, exiting, and recording values on this span will not notify the
507 /// `Collector` but _may_ record log messages if the `log` feature flag is
508 /// enabled.
509 #[inline(always)]
510 pub fn new_disabled(meta: &'static Metadata<'static>) -> Span {
511 Self {
512 inner: None,
513 meta: Some(meta),
514 }
515 }
516
517 /// Constructs a new span that is *completely disabled*.
518 ///
519 /// This can be used rather than `Option<Span>` to represent cases where a
520 /// span is not present.
521 ///
522 /// Entering, exiting, and recording values on this span will do nothing.
523 #[inline(always)]
524 pub const fn none() -> Span {
525 Self {
526 inner: None,
527 meta: None,
528 }
529 }
530
531 /// Returns a handle to the span [considered by the `Collector`] to be the
532 /// current span.
533 ///
534 /// If the collector indicates that it does not track the current span, or
535 /// that the thread from which this function is called is not currently
536 /// inside a span, the returned span will be disabled.
537 ///
538 /// [considered by the `Collector`]: super::collect::Collect::current_span()
539 pub fn current() -> Span {
540 dispatch::get_default(|dispatch| {
541 if let Some((id, meta)) = dispatch.current_span().into_inner() {
542 let id = dispatch.clone_span(&id);
543 Self {
544 inner: Some(Inner::new(id, dispatch)),
545 meta: Some(meta),
546 }
547 } else {
548 Self::none()
549 }
550 })
551 }
552
553 fn make_with(
554 meta: &'static Metadata<'static>,
555 new_span: Attributes<'_>,
556 dispatch: &Dispatch,
557 ) -> Span {
558 let attrs = &new_span;
559 let id = dispatch.new_span(attrs);
560 let inner = Some(Inner::new(id, dispatch));
561
562 let span = Self {
563 inner,
564 meta: Some(meta),
565 };
566
567 if_log_enabled! { *meta.level(), {
568 let target = if attrs.is_empty() {
569 LIFECYCLE_LOG_TARGET
570 } else {
571 meta.target()
572 };
573 let values = attrs.values();
574 span.log(
575 target,
576 level_to_log!(*meta.level()),
577 format_args!("++ {};{}", meta.name(), crate::log::LogValueSet { values, is_first: false }),
578 );
579 }}
580
581 span
582 }
583
584 /// Enters this span, returning a guard that will exit the span when dropped.
585 ///
586 /// If this span is enabled by the current collector, then this function will
587 /// call [`Collect::enter`] with the span's [`Id`], and dropping the guard
588 /// will call [`Collect::exit`]. If the span is disabled, this does
589 /// nothing.
590 ///
591 /// <div class="example-wrap" style="display:inline-block">
592 /// <pre class="ignore" style="white-space:normal;font:inherit;">
593 ///
594 /// **Note**: The returned [`Entered`] guard does not
595 /// implement `Send`. Dropping the guard will exit *this* span,
596 /// and if the guard is sent to another thread and dropped there, that thread may
597 /// never have entered this span. Thus, `Entered` should not be sent
598 /// between threads.
599 ///
600 /// </pre></div>
601 ///
602 /// **Warning**: in asynchronous code that uses [async/await syntax][syntax],
603 /// [`Span::enter`] should be used very carefully or avoided entirely. Holding
604 /// the drop guard returned by `Span::enter` across `.await` points will
605 /// result in incorrect traces. For example,
606 ///
607 /// ```
608 /// # use tracing::info_span;
609 /// # async fn some_other_async_function() {}
610 /// async fn my_async_function() {
611 /// let span = info_span!("my_async_function");
612 ///
613 /// // WARNING: This span will remain entered until this
614 /// // guard is dropped...
615 /// let _enter = span.enter();
616 /// // ...but the `await` keyword may yield, causing the
617 /// // runtime to switch to another task, while remaining in
618 /// // this span!
619 /// some_other_async_function().await
620 ///
621 /// // ...
622 /// }
623 /// ```
624 ///
625 /// The drop guard returned by `Span::enter` exits the span when it is
626 /// dropped. When an async function or async block yields at an `.await`
627 /// point, the current scope is _exited_, but values in that scope are
628 /// **not** dropped (because the async block will eventually resume
629 /// execution from that await point). This means that _another_ task will
630 /// begin executing while _remaining_ in the entered span. This results in
631 /// an incorrect trace.
632 ///
633 /// Instead of using `Span::enter` in asynchronous code, prefer the
634 /// following:
635 ///
636 /// * To enter a span for a synchronous section of code within an async
637 /// block or function, prefer [`Span::in_scope`]. Since `in_scope` takes a
638 /// synchronous closure and exits the span when the closure returns, the
639 /// span will always be exited before the next await point. For example:
640 /// ```
641 /// # use tracing::info_span;
642 /// # async fn some_other_async_function(_: ()) {}
643 /// async fn my_async_function() {
644 /// let span = info_span!("my_async_function");
645 ///
646 /// let some_value = span.in_scope(|| {
647 /// // run some synchronous code inside the span...
648 /// });
649 ///
650 /// // This is okay! The span has already been exited before we reach
651 /// // the await point.
652 /// some_other_async_function(some_value).await;
653 ///
654 /// // ...
655 /// }
656 /// ```
657 /// * For instrumenting asynchronous code, `tracing` provides the
658 /// [`Future::instrument` combinator][instrument] for
659 /// attaching a span to a future (async function or block). This will
660 /// enter the span _every_ time the future is polled, and exit it whenever
661 /// the future yields.
662 ///
663 /// `Instrument` can be used with an async block inside an async function:
664 /// ```ignore
665 /// # use tracing::info_span;
666 /// use tracing::Instrument;
667 ///
668 /// # async fn some_other_async_function() {}
669 /// async fn my_async_function() {
670 /// let span = info_span!("my_async_function");
671 /// async move {
672 /// // This is correct! If we yield here, the span will be exited,
673 /// // and re-entered when we resume.
674 /// some_other_async_function().await;
675 ///
676 /// //more asynchronous code inside the span...
677 ///
678 /// }
679 /// // instrument the async block with the span...
680 /// .instrument(span)
681 /// // ...and await it.
682 /// .await
683 /// }
684 /// ```
685 ///
686 /// It can also be used to instrument calls to async functions at the
687 /// callsite:
688 /// ```ignore
689 /// # use tracing::debug_span;
690 /// use tracing::Instrument;
691 ///
692 /// # async fn some_other_async_function() {}
693 /// async fn my_async_function() {
694 /// let some_value = some_other_async_function()
695 /// .instrument(debug_span!("some_other_async_function"))
696 /// .await;
697 ///
698 /// // ...
699 /// }
700 /// ```
701 ///
702 /// * The [`#[instrument]` attribute macro][attr] can automatically generate
703 /// correct code when used on an async function:
704 ///
705 /// ```ignore
706 /// # async fn some_other_async_function() {}
707 /// #[tracing::instrument(level = "info")]
708 /// async fn my_async_function() {
709 ///
710 /// // This is correct! If we yield here, the span will be exited,
711 /// // and re-entered when we resume.
712 /// some_other_async_function().await;
713 ///
714 /// // ...
715 ///
716 /// }
717 /// ```
718 ///
719 /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
720 /// [instrument]: crate::Instrument
721 /// [attr]: macro@crate::instrument
722 ///
723 /// # Examples
724 ///
725 /// ```
726 /// # use tracing::{span, Level};
727 /// let span = span!(Level::INFO, "my_span");
728 /// let guard = span.enter();
729 ///
730 /// // code here is within the span
731 ///
732 /// drop(guard);
733 ///
734 /// // code here is no longer within the span
735 ///
736 /// ```
737 ///
738 /// Guards need not be explicitly dropped:
739 ///
740 /// ```
741 /// # use tracing::trace_span;
742 /// fn my_function() -> String {
743 /// // enter a span for the duration of this function.
744 /// let span = trace_span!("my_function");
745 /// let _enter = span.enter();
746 ///
747 /// // anything happening in functions we call is still inside the span...
748 /// my_other_function();
749 ///
750 /// // returning from the function drops the guard, exiting the span.
751 /// return "Hello world".to_owned();
752 /// }
753 ///
754 /// fn my_other_function() {
755 /// // ...
756 /// }
757 /// ```
758 ///
759 /// Sub-scopes may be created to limit the duration for which the span is
760 /// entered:
761 ///
762 /// ```
763 /// # use tracing::{info, info_span};
764 /// let span = info_span!("my_great_span");
765 ///
766 /// {
767 /// let _enter = span.enter();
768 ///
769 /// // this event occurs inside the span.
770 /// info!("i'm in the span!");
771 ///
772 /// // exiting the scope drops the guard, exiting the span.
773 /// }
774 ///
775 /// // this event is not inside the span.
776 /// info!("i'm outside the span!")
777 /// ```
778 ///
779 /// [`Collect::enter`]: super::collect::Collect::enter()
780 /// [`Collect::exit`]: super::collect::Collect::exit()
781 /// [`Id`]: super::Id
782 #[inline(always)]
783 pub fn enter(&self) -> Entered<'_> {
784 self.do_enter();
785 Entered {
786 span: self,
787 _not_send: PhantomNotSend,
788 }
789 }
790
791 /// Enters this span, consuming it and returning a [guard][`EnteredSpan`]
792 /// that will exit the span when dropped.
793 ///
794 /// If this span is enabled by the current collector, then this function will
795 /// call [`Collect::enter`] with the span's [`Id`], and dropping the guard
796 /// will call [`Collect::exit`]. If the span is disabled, this does
797 /// nothing.
798 ///
799 /// This is similar to the [`Span::enter`] method, except that it moves the
800 /// span by value into the returned guard, rather than borrowing it.
801 /// Therefore, this method can be used to create and enter a span in a
802 /// single expression, without requiring a `let`-binding. For example:
803 ///
804 /// ```
805 /// # use tracing::info_span;
806 /// let _span = info_span!("something_interesting").entered();
807 /// ```
808 /// rather than:
809 /// ```
810 /// # use tracing::info_span;
811 /// let span = info_span!("something_interesting");
812 /// let _e = span.enter();
813 /// ```
814 ///
815 /// Furthermore, `entered` may be used when the span must be stored in some
816 /// other struct or be passed to a function while remaining entered.
817 ///
818 /// <div class="example-wrap" style="display:inline-block">
819 /// <pre class="ignore" style="white-space:normal;font:inherit;">
820 ///
821 /// **Note**: The returned [`EnteredSpan`] guard does not
822 /// implement `Send`. Dropping the guard will exit *this* span,
823 /// and if the guard is sent to another thread and dropped there, that thread may
824 /// never have entered this span. Thus, `EnteredSpan`s should not be sent
825 /// between threads.
826 ///
827 /// </pre></div>
828 ///
829 /// **Warning**: in asynchronous code that uses [async/await syntax][syntax],
830 /// [`Span::entered`] should be used very carefully or avoided entirely. Holding
831 /// the drop guard returned by `Span::entered` across `.await` points will
832 /// result in incorrect traces. See the documentation for the
833 /// [`Span::enter`] method for details.
834 ///
835 /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
836 ///
837 /// # Examples
838 ///
839 /// The returned guard can be [explicitly exited][EnteredSpan::exit],
840 /// returning the un-entered span:
841 ///
842 /// ```
843 /// # use tracing::{Level, span};
844 /// let span = span!(Level::INFO, "doing_something").entered();
845 ///
846 /// // code here is within the span
847 ///
848 /// // explicitly exit the span, returning it
849 /// let span = span.exit();
850 ///
851 /// // code here is no longer within the span
852 ///
853 /// // enter the span again
854 /// let span = span.entered();
855 ///
856 /// // now we are inside the span once again
857 /// ```
858 ///
859 /// Guards need not be explicitly dropped:
860 ///
861 /// ```
862 /// # use tracing::trace_span;
863 /// fn my_function() -> String {
864 /// // enter a span for the duration of this function.
865 /// let span = trace_span!("my_function").entered();
866 ///
867 /// // anything happening in functions we call is still inside the span...
868 /// my_other_function();
869 ///
870 /// // returning from the function drops the guard, exiting the span.
871 /// return "Hello world".to_owned();
872 /// }
873 ///
874 /// fn my_other_function() {
875 /// // ...
876 /// }
877 /// ```
878 ///
879 /// Since the [`EnteredSpan`] guard can dereference to the [`Span`] itself,
880 /// the span may still be accessed while entered. For example:
881 ///
882 /// ```rust
883 /// # use tracing::info_span;
884 /// use tracing::field;
885 ///
886 /// // create the span with an empty field, and enter it.
887 /// let span = info_span!("my_span", some_field = field::Empty).entered();
888 ///
889 /// // we can still record a value for the field while the span is entered.
890 /// span.record("some_field", &"hello world!");
891 /// ```
892 ///
893 /// [`Collect::enter`]: super::collect::Collect::enter()
894 /// [`Collect::exit`]: super::collect::Collect::exit()
895 /// [`Id`]: super::Id
896 #[inline(always)]
897 pub fn entered(self) -> EnteredSpan {
898 self.do_enter();
899 EnteredSpan {
900 span: self,
901 _not_send: PhantomNotSend,
902 }
903 }
904
905 /// Returns this span, if it was [enabled] by the current [collector], or
906 /// the [current span] (whose lexical distance may be further than expected),
907 /// if this span [is disabled].
908 ///
909 /// This method can be useful when propagating spans to spawned threads or
910 /// [async tasks]. Consider the following:
911 ///
912 /// ```
913 /// let _parent_span = tracing::info_span!("parent").entered();
914 ///
915 /// // ...
916 ///
917 /// let child_span = tracing::debug_span!("child");
918 ///
919 /// std::thread::spawn(move || {
920 /// let _entered = child_span.entered();
921 ///
922 /// tracing::info!("spawned a thread!");
923 ///
924 /// // ...
925 /// });
926 /// ```
927 ///
928 /// If the current [collector] enables the [`DEBUG`] level, then both
929 /// the "parent" and "child" spans will be enabled. Thus, when the "spawned
930 /// a thread!" event occurs, it will be inside of the "child" span. Because
931 /// "parent" is the parent of "child", the event will _also_ be inside of
932 /// "parent".
933 ///
934 /// However, if the collector only enables the [`INFO`] level, the "child"
935 /// span will be disabled. When the thread is spawned, the
936 /// `child_span.entered()` call will do nothing, since "child" is not
937 /// enabled. In this case, the "spawned a thread!" event occurs outside of
938 /// *any* span, since the "child" span was responsible for propagating its
939 /// parent to the spawned thread.
940 ///
941 /// If this is not the desired behavior, `Span::or_current` can be used to
942 /// ensure that the "parent" span is propagated in both cases, either as a
943 /// parent of "child" _or_ directly. For example:
944 ///
945 /// ```
946 /// let _parent_span = tracing::info_span!("parent").entered();
947 ///
948 /// // ...
949 ///
950 /// // If DEBUG is enabled, then "child" will be enabled, and `or_current`
951 /// // returns "child". Otherwise, if DEBUG is not enabled, "child" will be
952 /// // disabled, and `or_current` returns "parent".
953 /// let child_span = tracing::debug_span!("child").or_current();
954 ///
955 /// std::thread::spawn(move || {
956 /// let _entered = child_span.entered();
957 ///
958 /// tracing::info!("spawned a thread!");
959 ///
960 /// // ...
961 /// });
962 /// ```
963 ///
964 /// When spawning [asynchronous tasks][async tasks], `Span::or_current` can
965 /// be used similarly, in combination with [`instrument`]:
966 ///
967 /// ```
968 /// use tracing::Instrument;
969 /// # // lol
970 /// # mod tokio {
971 /// # pub(super) fn spawn(_: impl std::future::Future) {}
972 /// # }
973 ///
974 /// let _parent_span = tracing::info_span!("parent").entered();
975 ///
976 /// // ...
977 ///
978 /// let child_span = tracing::debug_span!("child");
979 ///
980 /// tokio::spawn(
981 /// async {
982 /// tracing::info!("spawned a task!");
983 ///
984 /// // ...
985 ///
986 /// }.instrument(child_span.or_current())
987 /// );
988 /// ```
989 ///
990 /// In general, `or_current` should be preferred over nesting an
991 /// [`instrument`] call inside of an [`in_current_span`] call, as using
992 /// `or_current` will be more efficient.
993 ///
994 /// ```
995 /// use tracing::Instrument;
996 /// # // lol
997 /// # mod tokio {
998 /// # pub(super) fn spawn(_: impl std::future::Future) {}
999 /// # }
1000 /// async fn my_async_fn() {
1001 /// // ...
1002 /// }
1003 ///
1004 /// let _parent_span = tracing::info_span!("parent").entered();
1005 ///
1006 /// // Do this:
1007 /// tokio::spawn(
1008 /// my_async_fn().instrument(tracing::debug_span!("child").or_current())
1009 /// );
1010 ///
1011 /// // ...rather than this:
1012 /// tokio::spawn(
1013 /// my_async_fn()
1014 /// .instrument(tracing::debug_span!("child"))
1015 /// .in_current_span()
1016 /// );
1017 /// ```
1018 ///
1019 /// [enabled]: crate::collect::Collect::enabled
1020 /// [collector]: crate::collect::Collect
1021 /// [current span]: Span::current
1022 /// [is disabled]: Span::is_disabled
1023 /// [`INFO`]: crate::Level::INFO
1024 /// [`DEBUG`]: crate::Level::DEBUG
1025 /// [async tasks]: std::task
1026 /// [`instrument`]: crate::instrument::Instrument::instrument
1027 /// [`in_current_span`]: crate::instrument::Instrument::in_current_span
1028 pub fn or_current(self) -> Self {
1029 if self.is_disabled() {
1030 return Self::current();
1031 }
1032 self
1033 }
1034
1035 #[inline(always)]
1036 fn do_enter(&self) {
1037 if let Some(inner) = self.inner.as_ref() {
1038 inner.collector.enter(&inner.id);
1039 }
1040
1041 if_log_enabled! { crate::Level::TRACE, {
1042 if let Some(_meta) = self.meta {
1043 self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("-> {};", _meta.name()));
1044 }
1045 }}
1046 }
1047
1048 // Called from [`Entered`] and [`EnteredSpan`] drops.
1049 //
1050 // Running this behaviour on drop rather than with an explicit function
1051 // call means that spans may still be exited when unwinding.
1052 #[inline(always)]
1053 fn do_exit(&self) {
1054 if let Some(inner) = self.inner.as_ref() {
1055 inner.collector.exit(&inner.id);
1056 }
1057
1058 if_log_enabled! { crate::Level::TRACE, {
1059 if let Some(_meta) = self.meta {
1060 self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("<- {};", _meta.name()));
1061 }
1062 }}
1063 }
1064
1065 /// Executes the given function in the context of this span.
1066 ///
1067 /// If this span is enabled, then this function enters the span, invokes `f`
1068 /// and then exits the span. If the span is disabled, `f` will still be
1069 /// invoked, but in the context of the currently-executing span (if there is
1070 /// one).
1071 ///
1072 /// Returns the result of evaluating `f`.
1073 ///
1074 /// # Examples
1075 ///
1076 /// ```
1077 /// # use tracing::{trace, span, Level};
1078 /// let my_span = span!(Level::TRACE, "my_span");
1079 ///
1080 /// my_span.in_scope(|| {
1081 /// // this event occurs within the span.
1082 /// trace!("i'm in the span!");
1083 /// });
1084 ///
1085 /// // this event occurs outside the span.
1086 /// trace!("i'm not in the span!");
1087 /// ```
1088 ///
1089 /// Calling a function and returning the result:
1090 /// ```
1091 /// # use tracing::{info_span, Level};
1092 /// fn hello_world() -> String {
1093 /// "Hello world!".to_owned()
1094 /// }
1095 ///
1096 /// let span = info_span!("hello_world");
1097 /// // the span will be entered for the duration of the call to
1098 /// // `hello_world`.
1099 /// let a_string = span.in_scope(hello_world);
1100 ///
1101 pub fn in_scope<F: FnOnce() -> T, T>(&self, f: F) -> T {
1102 let _enter = self.enter();
1103 f()
1104 }
1105
1106 /// Returns a [`Field`](super::field::Field) for the field with the
1107 /// given `name`, if one exists,
1108 pub fn field<Q>(&self, field: &Q) -> Option<field::Field>
1109 where
1110 Q: field::AsField + ?Sized,
1111 {
1112 self.metadata().and_then(|meta| field.as_field(meta))
1113 }
1114
1115 /// Returns true if this `Span` has a field for the given
1116 /// [`Field`](super::field::Field) or field name.
1117 #[inline]
1118 pub fn has_field<Q>(&self, field: &Q) -> bool
1119 where
1120 Q: field::AsField + ?Sized,
1121 {
1122 self.field(field).is_some()
1123 }
1124
1125 /// Records that the field described by `field` has the value `value`.
1126 ///
1127 /// This may be used with [`field::Empty`] to declare fields whose values
1128 /// are not known when the span is created, and record them later:
1129 /// ```
1130 /// use tracing::{trace_span, field};
1131 ///
1132 /// // Create a span with two fields: `greeting`, with the value "hello world", and
1133 /// // `parting`, without a value.
1134 /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
1135 ///
1136 /// // ...
1137 ///
1138 /// // Now, record a value for parting as well.
1139 /// // (note that the field name is passed as a string slice)
1140 /// span.record("parting", "goodbye world!");
1141 /// ```
1142 /// However, it may also be used to record a _new_ value for a field whose
1143 /// value was already recorded:
1144 /// ```
1145 /// use tracing::info_span;
1146 /// # fn do_something() -> Result<(), ()> { Err(()) }
1147 ///
1148 /// // Initially, let's assume that our attempt to do something is going okay...
1149 /// let span = info_span!("doing_something", is_okay = true);
1150 /// let _e = span.enter();
1151 ///
1152 /// match do_something() {
1153 /// Ok(something) => {
1154 /// // ...
1155 /// }
1156 /// Err(_) => {
1157 /// // Things are no longer okay!
1158 /// span.record("is_okay", false);
1159 /// }
1160 /// }
1161 /// ```
1162 ///
1163 /// <div class="example-wrap" style="display:inline-block">
1164 /// <pre class="ignore" style="white-space:normal;font:inherit;">
1165 ///
1166 /// **Note**: The fields associated with a span are part of its [`Metadata`].
1167 /// The [`Metadata`] describing a particular
1168 /// span is constructed statically when the span is created and cannot be extended later to
1169 /// add new fields. Therefore, you cannot record a value for a field that was not specified
1170 /// when the span was created:
1171 ///
1172 /// </pre></div>
1173 ///
1174 /// ```
1175 /// use tracing::{trace_span, field};
1176 ///
1177 /// // Create a span with two fields: `greeting`, with the value "hello world", and
1178 /// // `parting`, without a value.
1179 /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
1180 ///
1181 /// // ...
1182 ///
1183 /// // Now, you try to record a value for a new field, `new_field`, which was not
1184 /// // declared as `Empty` or populated when you created `span`.
1185 /// // You won't get any error, but the assignment will have no effect!
1186 /// span.record("new_field", "interesting_value_you_really_need");
1187 ///
1188 /// // Instead, all fields that may be recorded after span creation should be declared up front,
1189 /// // using field::Empty when a value is not known, as we did for `parting`.
1190 /// // This `record` call will indeed replace field::Empty with "you will be remembered".
1191 /// span.record("parting", "you will be remembered");
1192 /// ```
1193 ///
1194 /// <div class="example-wrap" style="display:inline-block">
1195 /// <pre class="ignore" style="white-space:normal;font:inherit;">
1196 /// **Note**: To record several values in just one call, see the [`record_all!`](crate::record_all!) macro.
1197 /// </pre></div>
1198 ///
1199 /// [`field::Empty`]: super::field::Empty
1200 /// [`Metadata`]: super::Metadata
1201 pub fn record<Q, V>(&self, field: &Q, value: V) -> &Self
1202 where
1203 Q: field::AsField + ?Sized,
1204 V: field::Value,
1205 {
1206 if let Some(meta) = self.meta {
1207 if let Some(field) = field.as_field(meta) {
1208 self.record_all(
1209 &meta
1210 .fields()
1211 .value_set(&[(&field, Some(&value as &dyn field::Value))]),
1212 );
1213 }
1214 }
1215
1216 self
1217 }
1218
1219 /// Records all the fields in the provided `ValueSet`.
1220 #[doc(hidden)]
1221 pub fn record_all(&self, values: &field::ValueSet<'_>) -> &Self {
1222 let record = Record::new(values);
1223 if let Some(ref inner) = self.inner {
1224 inner.record(&record);
1225 }
1226
1227 if let Some(_meta) = self.meta {
1228 if_log_enabled! { *_meta.level(), {
1229 let target = if record.is_empty() {
1230 LIFECYCLE_LOG_TARGET
1231 } else {
1232 _meta.target()
1233 };
1234 self.log(
1235 target,
1236 level_to_log!(*_meta.level()),
1237 format_args!("{};{}", _meta.name(), crate::log::LogValueSet { values, is_first: false }),
1238 );
1239 }}
1240 }
1241
1242 self
1243 }
1244
1245 /// Returns `true` if this span was disabled by the collector and does not
1246 /// exist.
1247 ///
1248 /// See also [`is_none`].
1249 ///
1250 /// [`is_none`]: Span::is_none()
1251 #[inline]
1252 pub fn is_disabled(&self) -> bool {
1253 self.inner.is_none()
1254 }
1255
1256 /// Returns `true` if this span was constructed by [`Span::none`] and is
1257 /// empty.
1258 ///
1259 /// If `is_none` returns `true` for a given span, then [`is_disabled`] will
1260 /// also return `true`. However, when a span is disabled by the collector
1261 /// rather than constructed by `Span::none`, this method will return
1262 /// `false`, while `is_disabled` will return `true`.
1263 ///
1264 /// [`is_disabled`]: Span::is_disabled()
1265 #[inline]
1266 pub fn is_none(&self) -> bool {
1267 self.is_disabled() && self.meta.is_none()
1268 }
1269
1270 /// Indicates that the span with the given ID has an indirect causal
1271 /// relationship with this span.
1272 ///
1273 /// This relationship differs somewhat from the parent-child relationship: a
1274 /// span may have any number of prior spans, rather than a single one; and
1275 /// spans are not considered to be executing _inside_ of the spans they
1276 /// follow from. This means that a span may close even if subsequent spans
1277 /// that follow from it are still open, and time spent inside of a
1278 /// subsequent span should not be included in the time its precedents were
1279 /// executing. This is used to model causal relationships such as when a
1280 /// single future spawns several related background tasks, et cetera.
1281 ///
1282 /// If this span is disabled, or the resulting follows-from relationship
1283 /// would be invalid, this function will do nothing.
1284 ///
1285 /// # Examples
1286 ///
1287 /// Setting a `follows_from` relationship with a `Span`:
1288 /// ```
1289 /// # use tracing::{span, Id, Level, Span};
1290 /// let span1 = span!(Level::INFO, "span_1");
1291 /// let span2 = span!(Level::DEBUG, "span_2");
1292 /// span2.follows_from(&span1);
1293 /// ```
1294 ///
1295 /// Setting a `follows_from` relationship with the current span:
1296 /// ```
1297 /// # use tracing::{span, Id, Level, Span};
1298 /// let span = span!(Level::INFO, "hello!");
1299 /// span.follows_from(&Span::current());
1300 /// ```
1301 ///
1302 /// Setting a `follows_from` relationship with an `Id`:
1303 /// ```
1304 /// # use tracing::{span, Id, Level, Span};
1305 /// let span = span!(Level::INFO, "hello!");
1306 /// let id = span.id();
1307 /// span.follows_from(id);
1308 /// ```
1309 pub fn follows_from(&self, from: impl Into<Option<Id>>) -> &Self {
1310 if let Some(ref inner) = self.inner {
1311 if let Some(from) = from.into() {
1312 inner.follows_from(&from);
1313 }
1314 }
1315 self
1316 }
1317
1318 /// Returns this span's `Id`, if it is enabled.
1319 pub fn id(&self) -> Option<Id> {
1320 self.inner.as_ref().map(Inner::id)
1321 }
1322
1323 /// Returns this span's `Metadata`, if it is enabled.
1324 pub fn metadata(&self) -> Option<&'static Metadata<'static>> {
1325 self.meta
1326 }
1327
1328 #[cfg(feature = "log")]
1329 #[inline]
1330 fn log(&self, target: &str, level: log::Level, message: fmt::Arguments<'_>) {
1331 if let Some(meta) = self.meta {
1332 if level_to_log!(*meta.level()) <= log::max_level() {
1333 let logger = log::logger();
1334 let log_meta = log::Metadata::builder().level(level).target(target).build();
1335 if logger.enabled(&log_meta) {
1336 if let Some(ref inner) = self.inner {
1337 logger.log(
1338 &log::Record::builder()
1339 .metadata(log_meta)
1340 .module_path(meta.module_path())
1341 .file(meta.file())
1342 .line(meta.line())
1343 .args(format_args!("{} span={}", message, inner.id.into_u64()))
1344 .build(),
1345 );
1346 } else {
1347 logger.log(
1348 &log::Record::builder()
1349 .metadata(log_meta)
1350 .module_path(meta.module_path())
1351 .file(meta.file())
1352 .line(meta.line())
1353 .args(message)
1354 .build(),
1355 );
1356 }
1357 }
1358 }
1359 }
1360 }
1361
1362 /// Invokes a function with a reference to this span's ID and collector.
1363 ///
1364 /// if this span is enabled, the provided function is called, and the result is returned.
1365 /// If the span is disabled, the function is not called, and this method returns `None`
1366 /// instead.
1367 pub fn with_collector<T>(&self, f: impl FnOnce((&Id, &Dispatch)) -> T) -> Option<T> {
1368 self.inner
1369 .as_ref()
1370 .map(|inner| f((&inner.id, &inner.collector)))
1371 }
1372}
1373
1374impl cmp::PartialEq for Span {
1375 fn eq(&self, other: &Self) -> bool {
1376 match (&self.meta, &other.meta) {
1377 (Some(this), Some(that)) => {
1378 this.callsite() == that.callsite() && self.inner == other.inner
1379 }
1380 _ => false,
1381 }
1382 }
1383}
1384
1385impl Hash for Span {
1386 fn hash<H: Hasher>(&self, hasher: &mut H) {
1387 self.inner.hash(hasher);
1388 }
1389}
1390
1391impl fmt::Debug for Span {
1392 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1393 let mut span = f.debug_struct("Span");
1394 if let Some(meta) = self.meta {
1395 span.field("name", &meta.name())
1396 .field("level", &meta.level())
1397 .field("target", &meta.target());
1398
1399 if let Some(ref inner) = self.inner {
1400 span.field("id", &inner.id());
1401 } else {
1402 span.field("disabled", &true);
1403 }
1404
1405 if let Some(ref path) = meta.module_path() {
1406 span.field("module_path", &path);
1407 }
1408
1409 if let Some(ref line) = meta.line() {
1410 span.field("line", &line);
1411 }
1412
1413 if let Some(ref file) = meta.file() {
1414 span.field("file", &file);
1415 }
1416 } else {
1417 span.field("none", &true);
1418 }
1419
1420 span.finish()
1421 }
1422}
1423
1424impl<'a> From<&'a Span> for Option<&'a Id> {
1425 fn from(span: &'a Span) -> Self {
1426 span.inner.as_ref().map(|inner| &inner.id)
1427 }
1428}
1429
1430impl<'a> From<&'a Span> for Option<Id> {
1431 fn from(span: &'a Span) -> Self {
1432 span.inner.as_ref().map(Inner::id)
1433 }
1434}
1435
1436impl<'a> From<&'a EnteredSpan> for Option<&'a Id> {
1437 fn from(span: &'a EnteredSpan) -> Self {
1438 span.inner.as_ref().map(|inner| &inner.id)
1439 }
1440}
1441
1442impl<'a> From<&'a EnteredSpan> for Option<Id> {
1443 fn from(span: &'a EnteredSpan) -> Self {
1444 span.inner.as_ref().map(Inner::id)
1445 }
1446}
1447
1448impl Drop for Span {
1449 #[inline(always)]
1450 fn drop(&mut self) {
1451 if let Some(Inner {
1452 ref id,
1453 ref collector,
1454 }) = self.inner
1455 {
1456 collector.try_close(id.clone());
1457 }
1458
1459 if_log_enabled! { crate::Level::TRACE, {
1460 if let Some(meta) = self.meta {
1461 self.log(
1462 LIFECYCLE_LOG_TARGET,
1463 log::Level::Trace,
1464 format_args!("-- {};", meta.name()),
1465 );
1466 }
1467 }}
1468 }
1469}
1470
1471// ===== impl Inner =====
1472
1473impl Inner {
1474 /// Indicates that the span with the given ID has an indirect causal
1475 /// relationship with this span.
1476 ///
1477 /// This relationship differs somewhat from the parent-child relationship: a
1478 /// span may have any number of prior spans, rather than a single one; and
1479 /// spans are not considered to be executing _inside_ of the spans they
1480 /// follow from. This means that a span may close even if subsequent spans
1481 /// that follow from it are still open, and time spent inside of a
1482 /// subsequent span should not be included in the time its precedents were
1483 /// executing. This is used to model causal relationships such as when a
1484 /// single future spawns several related background tasks, et cetera.
1485 ///
1486 /// If this span is disabled, this function will do nothing. Otherwise, it
1487 /// returns `Ok(())` if the other span was added as a precedent of this
1488 /// span, or an error if this was not possible.
1489 fn follows_from(&self, from: &Id) {
1490 self.collector.record_follows_from(&self.id, from)
1491 }
1492
1493 /// Returns the span's ID.
1494 fn id(&self) -> Id {
1495 self.id.clone()
1496 }
1497
1498 fn record(&self, values: &Record<'_>) {
1499 self.collector.record(&self.id, values)
1500 }
1501
1502 fn new(id: Id, collector: &Dispatch) -> Self {
1503 Inner {
1504 id,
1505 collector: collector.clone(),
1506 }
1507 }
1508}
1509
1510impl cmp::PartialEq for Inner {
1511 fn eq(&self, other: &Self) -> bool {
1512 self.id == other.id
1513 }
1514}
1515
1516impl Hash for Inner {
1517 fn hash<H: Hasher>(&self, state: &mut H) {
1518 self.id.hash(state);
1519 }
1520}
1521
1522impl Clone for Inner {
1523 fn clone(&self) -> Self {
1524 Inner {
1525 id: self.collector.clone_span(&self.id),
1526 collector: self.collector.clone(),
1527 }
1528 }
1529}
1530
1531// ===== impl Entered =====
1532
1533impl EnteredSpan {
1534 /// Returns this span's `Id`, if it is enabled.
1535 pub fn id(&self) -> Option<Id> {
1536 self.inner.as_ref().map(Inner::id)
1537 }
1538
1539 /// Exits this span, returning the underlying [`Span`].
1540 #[inline]
1541 pub fn exit(mut self) -> Span {
1542 // One does not simply move out of a struct with `Drop`.
1543 let span = mem::replace(&mut self.span, Span::none());
1544 span.do_exit();
1545 span
1546 }
1547}
1548
1549impl Deref for EnteredSpan {
1550 type Target = Span;
1551
1552 #[inline]
1553 fn deref(&self) -> &Span {
1554 &self.span
1555 }
1556}
1557
1558impl Drop for Entered<'_> {
1559 #[inline(always)]
1560 fn drop(&mut self) {
1561 self.span.do_exit()
1562 }
1563}
1564
1565impl Drop for EnteredSpan {
1566 #[inline(always)]
1567 fn drop(&mut self) {
1568 self.span.do_exit()
1569 }
1570}
1571
1572/// Technically, `Entered` (or `EnteredSpan`) _can_ implement both `Send` *and*
1573/// `Sync` safely. It doesn't, because it has a `PhantomNotSend` field,
1574/// specifically added in order to make it `!Send`.
1575///
1576/// Sending an `Entered` guard between threads cannot cause memory unsafety.
1577/// However, it *would* result in incorrect behavior, so we add a
1578/// `PhantomNotSend` to prevent it from being sent between threads. This is
1579/// because it must be *dropped* on the same thread that it was created;
1580/// otherwise, the span will never be exited on the thread where it was entered,
1581/// and it will attempt to exit the span on a thread that may never have entered
1582/// it. However, we still want them to be `Sync` so that a struct holding an
1583/// `Entered` guard can be `Sync`.
1584///
1585/// Thus, this is totally safe.
1586#[derive(Debug)]
1587struct PhantomNotSend {
1588 ghost: PhantomData<*mut ()>,
1589}
1590
1591#[allow(non_upper_case_globals)]
1592const PhantomNotSend: PhantomNotSend = PhantomNotSend { ghost: PhantomData };
1593
1594/// # Safety
1595///
1596/// Trivially safe, as `PhantomNotSend` doesn't have any API.
1597unsafe impl Sync for PhantomNotSend {}
1598
1599#[cfg(test)]
1600mod test {
1601 use super::*;
1602
1603 #[allow(dead_code)]
1604 trait AssertSend: Send {}
1605 impl AssertSend for Span {}
1606
1607 #[allow(dead_code)]
1608 trait AssertSync: Sync {}
1609 impl AssertSync for Span {}
1610 impl AssertSync for Entered<'_> {}
1611 impl AssertSync for EnteredSpan {}
1612
1613 #[test]
1614 fn test_record_backwards_compat() {
1615 Span::current().record("some-key", "some text");
1616 Span::current().record("some-key", false);
1617 }
1618}